put it into a small flask provided with a thistle-tube and a delivery-tube. Cover the Zn with water, and introduce through the thistle-tube measured quantities of HCl, a few cubic centimeters at a time. Collect the H over water in large flasks, observing the same directions as in removing O. Weigh the water, compute the volume of the gas, reduce it to the standard, and obtain the weight, as before. Should any Zn or other solid substance be left, pour off the water or filter it, weigh the dry residue, and deduct its weight from that of the Zn originally taken. Suppose the residue to weigh 0.5g. Make and solve the proportion from the equation:- Zn + 2HCl = ZnCl2 + 2H. 65 2. 4.5 x. Compute the percentage of errcr, as in the case of O. If the purity of the HCl be known, i.e. the weight of HCl gas in one cubic centimeter of the liquid, a proportion can be made between HCl and H, provided no free HCl is left in the flask. State any liabilities to error in this experiment. PROBLEMS. (1) A gas occupies 2000cc.when the barometer stands 750mm. What volume will it fill at 760mm? (2) At 750mm my volume of O is 4 1/2 liters. What will it be at 730mm? (3) At 825mm? (4) At 200mm? (5) Compute the volume of a gas at 70 degrees, which at 30 degrees is 150cc. (6) At 0 degrees I have 3000cc.of O. What volume will it occupy at 100 degrees? (7) I fill a flask holding 2 litres with H. The thermometer indicates 26 degrees, the barometer 762mm. What is the volume of the gas at 0 degrees and 760mm? If the volumes of gases vary as above, it is evident that their vapor densities must vary inversely. A liter of H at 0 degrees weighs 0.0896. What will a liter of H weigh at 273 degrees? At 273 degrees the one liter has be- come two liters, one of which weighs 0.0448 (= 0.0896 / 2). The vapor density of a gas is inversely proportional to the temperature. Also, the vapor density is directly proportional to the pressure, since a liter of any gas under a pressure of one atmosphere is reduced to half a liter under two atmospheres. PROBLEMS. (1) Find the weight of a liter of O at 0 degrees; then compute the weight of a liter at 27 degrees. (2) Find the weight of 500cc.of N2O at 60 degrees. (3) Of 200 cc. of CO at -5 degrees. (4) A given volume of O weighs 0.25g at a pressure of 750mm; find the weight of a like volume of O at 758mm. APPENDIX. INDIVIDUAL APPARATUS. Each pupil should be provided with the apparatus given below, but in cases where great economy must be exercised different pupils may, by working at different times, use the same set. The author has selected apparatus specially adapted, as to exact dimensions, quality, and cheap- ness, for performing in the best way the experiments herein described, and sets or separate pieces of this, together with other apparatus and chemicals, can be had of the L.E. Knott Apparatus Co., 14 Ashburton Place, Boston, to which firm teachers are referred for catalogs. 4 wide-mouthed bottles (horse-radish size), with corks. 1 soda-bottle. 4 pieces window-glass (3 in. sq.). 2 pieces thick glass tubing (20 in. long, 4 in. outside diam.). 1 glass stirring-rod. 1 glass funnel (2 1/2 in. wide, 60 degrees). 2 pieces glass tubing (12 in. long; 5/8 in. diam.). 1 porcelain evaporating-dish (3 in. wide). 1 asbestus paper and 1 fine wire gauze (3 in. sq.). 1 iron (or tin) plate. 1 pair forceps. 1 triangular file and 1 round file. 1 copper wire (15 in. long). 6 test-tubes, and corks to fit. 1 wooden test-tube holder. 1 flask with cork (200cc). 1 Bunsen burner (or alcohol lamp). 1 iron ring-stand. 1 piece rubber tubing (18 in. long, 3/8 in. inside diam.). 4 reagent bottles (250cc), HCl, HNO3, H2SO4, NH4OH. 1 pneumatic trough. Wherever in this work "Bunsen burner" or "lamp" is mentioned, if gas is not to be had, an alcohol lamp may be substituted. GENERAL APPARATUS. The following list includes apparatus needed for occasional use:-- Metric rules (20 or 30cm long). Scales with metric weights (1-200 g). Metric graduates (25 or 50cc). Filter papers. Metric graduates (500cc). Reagent bottles (250 and 500cc). Mouth blowpipes. Platinum wire and foil. Mortars and pestles. Test-tube racks. Thistle-tubes. Filter-stands. Beakers. Glass tubing (3/16 in., 1/4 in., and 1 in. outside). Rubber tubing (1/8 in., and 3/8 in. inside). Hessian crucibles. Porcelain crucibles. Electrolytic apparatus, including 2 or more Bunsen cells. Ignition-tubes. Steel glass-cutters. Wire-cutters. Calcium chloride tubes. Water baths. Thermometers. Barometers, etc. APPENDIX. CHEMICALS. The following estimate is for twenty pupils: - Alcohol 1 pt Alum 1 oz Ammonium chloride 1/2 lb Ammonium hydrate 1 lb Ammonium nitrate. 1/2 lb Antimony (powdered metallic) 1/2 oz. Arsenic (powdered metallic) 1/2 oz. Arsenic trioxide..... 1 oz. Barium chloride..... 1 oz. Barium nitrate..... 1 oz. Beeswax....... 1 oz. Bleaching-powder.... 1/4 lb. Bone-black...... 1/2 lb. Bromine....... 1/4 lb. Calcium chloride.... 1 lb. Calcium fluoride (powdered) 1 lb. Cannel coal 1 lb Carbon disulphide 1/4 lb Chlorhydric acid 6 lb Cochineal 1 oz Copper (filings) 2 lb. Copper nitrate 1 oz Copper oxide 1/4 lb. Ether (sulphuric) 1/4 lb Ferrous sulphide 1 lb. Ferrous sulphate 1/4 lb Indigo 1/4 lb Iodine 1 oz Iron (filings or turnings) 1 lb. Lead (sheet) 4 lb Lead acetate 1 oz Lead nitrate 1/4 lb Litmus 1/2 oz Litmus paper 3 sheets Magnesium ribbon.... 3 ft. Manganese dioxide.... 2 lb. Mercurous nitrate.... 1/2 oz. Nitric acid 3 lb. Oxalic acid 1/4 lb Phosphorus 1/4 lb Potassium (metallic) 1/8 oz Potassium bromide 1/4 lb. Potassium dichromate 1/4 lb. Potassium chlorate 2 lb. Potassium hydrate 1/4 lb. Potassium iodide 2 oz Potassium nitrate 1/4 llb Silver nitrate 1 oz. Sodium 1/8 oz. Sodium carbonate 1/4 lb Sodium hydrate 1 lb. Sodium nitrate 1/2 lb Sodium silicate..... 1/2lb Turkey red cloth.... 1/2yd Sodium sulphate..... 1/4lb Turpentine(spirits). 1/4lb Sodium sulphide..... 1/4lb Zinc(granulated).... 2lb Sodium thiosulphate. 1/4lb Zinc foil........... 3ft Sulphur............. 2lb Sulphuric acid...... 12lb Additional Material These substances are best obtained of local dealers. Calcium carbonate(marble)..... 1lb Molasses...................... 1pt Calcium oxide(unslaked lime).. 1lb Sodium chloride(fine)......... 1lb Charcoal...................... 1lb Sodium chloride(coarse)....... 1lb Sheet lead.................... 4lb Sugar......................... 1/2lb FOR EXAMINATION Those in capitals are most important Rocks and Minerals. ARGILLITE, ARESENIC, ARSENOPYRITE, Barite, CALCITE, CASSITERITE, CHALCOPYRITE, CHALK, CINNABAR, COPPER (native), Corundum, Dolomite, EMERY, FELDSPAR, Flint, GALENITE, GRANITE, GRAPHITE, GYPSUM, HEMATITE, Hornblende, Jasper, LIMONITE, MAGNESITE, MAGNETITE, MALACHITE, Meerschaum, MICA, OBSIDIAN, Orpiment, PYRITE, QUARTZ, Realgar, SAND, SERPENTINE, SIDERITE, SPHALERITE, Talc, ZINCITE Metals and Alloys. Aluminium, Iron (cast), Aluminium bronze. Pewter, Bell metal, Solder, Brass, Steel, Bronze, Type metal, Copper, Tin foil, Galvanized iron, Tin (bright plate and terne plate), German silver, Zinc (sheet). Iron (wrought) Additional Compounds, for Examination: Copper acetate, Lead carbonate, Copper arsenite, Red lead, Copper nitrate, Magnesia alba, Copper sulphate, Smalt, Lead dioxide, Vermilion. Lead protoxide, TABLE OF SOLUTIONS. Number of grams of solids to be dissolved in 500cc of water. AgNO3......... 25 K2Al2(SO4)4...... 50 BaCl2......... 50 KBr.... 25 Ba(N0 3)2........ 30 K2Cr207........ 50 CaClz......... 60 KI.......... 25 Ca(OH)2...... saturated KOH....... 60 CaS04....... saturated NaICOS........ 50 CUC12 50 NaOH 60 Cu(N03)......... 50 NalSl03....... saturated FeS04......... 50 NH,N03........ 50 HgC12......... 30 Pb(C2H302)2...... 50 HgN03..... 25 + 25 HN03 Pb(NOs)2....... . 50 Other solutions....saturated. Indigo solution (sulphindigotic acid) is prepared by heating for several hours over a water bath, a mixture of ten parts of H 2SO4 with one of indigo, and, after letting it stand twenty-four hours, adding twenty parts of water and filtering. TEXTBOOK ADVERTISEMENTS THAT APPEARED IN THE ORIGINAL EDITION INTRODUCTION TO CHEMICAL SCIENCE By R.P. WILLIAMS, Instructor in Chemistry in the English High School, Boston. l2mo. Cloth. 216 pages. By mail, 90 cents; for introduction, 80 cents. This work is strictly, but easily, inductive. The pupil is stimulated by query and suggestion to observe important phenomena, and to draw correct conclusions. The experiments are illustrative, the apparatus is simple and easily made. The nomenclature, symbols, and writing of equations are made prominent features. In descriptive and theoretical chemistry, the arrangement of subjects is believed to be especially superior in that it presents, not a mere aggregation of facts, but the science of chemistry. Brevity aud concentration, induction, clearness, accuracy, and a legitimate regard for interest, are leading characteristics. The treatment is full enough for any high school or academy. Though the method is an advanced one, it has been so simplified that pupils experience no difficulty, but rather an added interest, in following it. The author himself has successfully employed this method in classes so large that the simplest and most practical plan has been a necessity. Thomas C. Van Nuys, Professor of Chemistry, Indiana University, Bloomington, Ind.: "I consider it an excellent work for students entering upon the study of chemistry." C.F. Adams, Teacher of Science, High School, Detroit, Mich.: "I have carried two classes through Williams's Chemistry. The book has surpassed my highest expectations. It gives greater satisfaction with each succeeding class." J.W. Simmons, County Superintendent of Schools, Owosso, Mich.:
Other sites:
db3nf.com
screen-capture.net
floresca.net
simonova.net
flora-source.com
flora-source.com
sourcecentral.com
sourcecentral.com
geocities.com