List Of Contents | Contents of An Introduction to Chemical Science
< < Previous Page     Next Page > >

litmus paper. (7) Add some from the first bottle to 5 or 10 cc.
of a solution of FeSO4 or FeCl2, and look for a ppt. State the

99. Formation.--Ammonia, hartshorn, exists in animal and
vegetable compounds, in salts, and, in small quantities, in the
atmosphere. Rain washes it from the atmosphere into the soil;
plants take it from the soil; animals extract it from plants.
Coal, bones, horns, etc., are the chief sources of it, and from
them it is obtained by distillation. It results also from
decomposing animal matter. NH3 can be produced by the direct
union of N and H, only by an electric discharge or by ozone. It
may be collected over Hg like other gases that are very soluble
in water.

100. Uses. --Ammonium hydrate, NH4OH, and ammonia, NH3, are used
in chemical operations, in making artificial ice, and to some
extent in medicine; from them also may be obtained ammonium
salts. State what you would put with NH4OH to obtain (NH4)2SO4.
To obtain NH4NO3. The use of NH4OH in the laboratory may be
illustrated by the following experiment:--

Experiment 60.--Into a t.t. put 10 cc. of a solution of ferrous
sulphate, FeSO4. Into another put 10 cc. of sodium sulphate
solution, Na2SO4. Add a little NH4OH to each. Notice a ppt. in
the one case but none in the other. If solutions of these two
compounds were mixed, the metals Fe and Na could be separated by
the addition of NH4OH, similar to the separation of Ag and Cu by
HCl. Try the experiment.



101. Preparation.

Experiment 61.--Dissolve 3 g. sodium carbonate, Na2CO3, in 10 or
15 cc. H2O in an e.d., and bring it to the boiling-point. Then
add to this a mixture of 1 or 2 g. calcium hydrate, Ca(OH)2, in 5
or 10cc. H2O. It will not dissolve. Boil the whole for five
minutes. Then pour off the liquid which holds NaOH in solution.
Evaporate if desired. This is the usual mode of preparing NaOH.

The reaction is Na2CO3 + Ca(OH)2 = 2NaOH + CaCO3. The residue is
Ca(OH)2 and CaCO3; the solution contains NaOH, which can be
solidified by evaporating the water. Sodium hydrate is an
ingredient in the manufacture of hard soap, and for this use
thousands of tons are made annually, mostly in Europe. It is an
important laboratory reagent, its use being similar to that of
ammonium hydrate. Exposed to the air, it takes up water and CO2,
forming a mixture of NaOH and Na2CO3. It is one of the strongest
alkalies, and corrodes the skin.

Experiment 62.--Put 20 cc. of H2O in a receiver. With the forceps
take a piece of Na, not larger than half a pea, from the naphtha
in which it is kept, drop it into the H2O, and at once cover the
receiver loosely with paper or cardboard. Watch the action, as
the Na decomposes H2O. HOH + Na = NaOH + H. If the water be hot
the action is so rapid that enough heat is produced to set the H
on fire. That the gas is H can be shown by putting the Na under
the mouth of a small inverted t.t., filled with cold water, in a
water-pan. Na rises to the top, and the t.t. fills with H, which
can be tested. NaOH dissolves in the water.102. Properties.

Experiment 63.--(1) Test with red litmus paper the solutions
obtained in the last two experiments. (2) To 5cc.of alum
solution, K2A12(SO4)4, add 2cc.of the liquid, and notice the
color and form of the ppt.


103. KOH is made in the Same Way as NaOH.

Describe the process in full (Experiment 61), and give the

Experiment 64.--Drop a small piece of K into a receiver of H2O,
as in Experiment 62. The K must be very small, and the experiment
should not be watched at too close a range. The receiver should
not be covered with glass, but with paper. The H burns, uniting
with O of the air. The purple color is imparted by the burning,
or oxidation of small particles of K. Write the equation for the
combustion of each.

H2O might be considered the symbol of an acid, since it is the
union of H and a negative element; or, if written HOH, it might
be called a base, since it has a positive element and the (OH)
radical. It is neutral to litmus, and on this account might be
called a salt. It is better, however, to call it simply an oxide.

Potassium hydrate, caustic potash, is employed for the
manufacture of soft soap. As a chemical reagent its action is
almost precisely like that of caustic soda, though it is usually
considered a stronger base, as K is a more electro-positive
element than Na.


104. Calcium Hydrate, the Most Common of the Bases, is nearly as
important to them as H2SO4 is to acids. Since it is used to make
the other bases, it might be called the strongest base; as H2SO4
is often called the strongest acid. The strength of an acid or
base, however,depends on the substance to which it is applied, as
well as on itself, and for most purposes this one is classified
as a weaker base than the three previously described.

Sulphuric acid, the most useful of the acids, is not made
directly from its salts, but has to be synthesized. Calcium
hydrate is also made by an indirect process, as follows:

CaCO3, i.e. limestone, marble, etc., is burnt in kilns with C, a
process which separates the gas, CO2, according to the reaction:
CaCO3 = CaO + CO2. CaO is unslaked lime, or quick-lime. On
treating this with water, slaked lime, Ca(OH)2 is formed, with
generation of great heat. CaO + H2O = Ca(OH)2. Its affinity for
H2O is so great that it takes the latter from the air, if

Experiment 65.--Saturate some unslaked lime with water, in an
e.d., and look for the results stated above, leaving it as long
as may be necessary.

105. Resume.--From the experiments in the last few chapters on
the three divisions of chemical compounds, acids, bases and
salts, we have seen (1) that acids and bases are the chemical
opposites of each other; (2) that salts are formed by the union
of acids and bases; (3) that some acids can be obtained from
their salts by the action of a stronger acid; (4) that some bases
can be got from salts by the similar action of other bases; (5)
that the strongest acids and bases, as well as others, may be
obtained in an indirect way by synthesis.



106. There are five oxides of N, only two of which are important.


107. Preparation.

Experiment 66.--Put into a flask, holding 200cc, lOg of ammonium
nitrate, NH4NO3; heat it over wire gauze or asbestus in an iron
plate, having a d.t. connected with a large t.t., which is held
in a receiver of water, and from this t.t., another d.t. passing
into a pneumatic trough, so as to collect the gas over water
(Fig. 30). Have all the bearings tight. The reaction is NH4NO3 =
2H2O + N2O. The t.t. is for collecting the H2O.

[Fig. 30.]

Note the color of the liquid in the t.t.; taste a drop, and test
it with litmus. If the flask is heated too fast, some NO is
formed, and this taking O from the air makes NO2, which liquefies
and gives an acid reaction and a red color. Some NH4NO3 is also
liable to be carried over.

108. Properties.

Experiment 67.--Test the gas in the receiver with a burning stick
and a glowing one, and compare the combustion with that in O.
N20may also be tested with S and P, if desired. N is set free in
each case. Write the reactions.

Nitrogen monoxide or protoxide, the nitrous oxide of dentists,
when inhaled, produces insensibility to pain,-- anaesthesia,--
and, if continued, death from suffocation. Birds die in half a
minute from breathing it. Mixed with one-fourth O, and inhaled
for a minute or two, it produces intoxication and laughter, and
hence is called laughing gas. As made in Experiment 66, it
contains Cl and NO, as impurities, and should not be breathed.


109. Preparation.

Experiment 68.--Into a t.t. or receiver put 5g Cu turnings, add 5
cc. H2O and 5 cc. HNO3. Collect the gas like H, over water. 3Cu +
8HNO3 = ? What two products will be left in the generator? Notice
the color of the liquid. This color is characteristic of Cu
salts. Notice also the red fumes of NO2.

110. Properties.

Experiment 69.--Test the gas with a burning stick, admitting as
little air as possible. Test it with burning S. NO is not a
supporter of C and S combustion. Put a small bit of P in a
deflagrating-spoon, and when it is vigorously burning, lower it
into the gas. It should continue to burn. State the reaction.
What combustion will NO support? Note that NO is half N, while
N2O is two-thirds N, and account for the difference in supporting


111. Preparation.

Experiment 70.--Lift from the water-pan a receiver of NO, and
note the colored fumes. They are NO2, or N2O4, nitrogen
tetroxide. NO + O = NO2. Is NO combustible? What is the source of
O in the experiment?OXIDES OF NITROGEN.


112. Preparation.

Experiment 71.--Put into a t.t. 1 g. of starch and 1 cc. of HNO3.
Heat the mixture for a minute. The red fumes are N2O3 and NO2.

Nitrogen pentoxide, N2O5, is an unimportant solid. United with
water it forms HNO3. N2O5 + H2O = 2HNO3.



113. Weight and Volume.--We have seen that water contains two
parts of H by volume to one part of O; or, by weight, two parts
of H to sixteen of O. These proportions are invariable, or no
symbol for water would be possible. Every compound in the same
way has an unvarying proportion of elements.

114. Law of Definite Proportion.--In a given compound the
proportion of any element by weight, or, if a gas, by volume is
always constant. Apply the law, by weight and by volume, to
these: HCl, NH3, H2S, N2O.

There is another law of equal importance in chemistry, which the
compounds of N and O well illustrate.

                               Weight.     Volume.
                               N.   O.     N.   O.
Nitrogen protoxide    N2O      28   16     2    1
Nitrogen dioxide      N2O2     28   32     2    2
Nitrogen trioxide.    N2O3     28   48     2    3
Nitrogen tetroxide    N2O4     28   64     2    4

< < Previous Page     Next Page > >

Other sites: